Gps mobile phone jammer abstract paper - cell phone & gps jammer block
Gps mobile phone jammer abstract paper - cell phone & gps jammer block
2021/04/07 Generating Distorted GNSS Signals Using a Signal Simulator By Mathieu Raimondi, Eric Sénant, Charles Fernet, Raphaël Pons, Hanaa Al Bitar, Francisco Amarillo Fernández, and Marc Weyer INNOVATION INSIGHTS by Richard Langley INTEGRITY.  It is one of the most desirable personality traits. It is the characteristic of truth and fair dealing, of honesty and sincerity. The word also can be applied to systems and actions with a meaning of soundness or being whole or undivided. This latter definition is clear when we consider that the word integrity comes from the Latin word integer, meaning untouched, intact, entire — the same origin as that for the integers in mathematics: whole numbers without a fractional or decimal component. Integrity is perhaps the most important requirement of any navigation system (along with accuracy, availability, and continuity). It characterizes a system’s ability to provide a timely warning when it fails to meet its stated accuracy. If it does not, we have an integrity failure and the possibility of conveying hazardously misleading information. GPS has built into it various checks and balances to ensure a fairly high level of integrity. However, GPS integrity failures have occasionally occurred. One of these was in 1990 when SVN19, a GPS Block II satellite operating as PRN19, suffered a hardware chain failure, which caused it to transmit an anomalous waveform. There was carrier leakage on the L1 signal spectrum. Receivers continued to acquire and process the SVN19 signals, oblivious to the fact that the signal distortion resulted in position errors of three to eight meters. Errors of this magnitude would normally go unnoticed by most users, and the significance of the failure wasn’t clear until March 1993 during some field tests of differential navigation for aided landings being conducted by the Federal Aviation Administration. The anomaly became known as the “evil waveform.” (I’m not sure who first came up with this moniker for the anomaly. Perhaps it was the folks at Stanford University who have worked closely with the FAA in its aircraft navigation research. The term has even made it into popular culture. The Japanese drone-metal rock band, Boris, released an album in 2005 titled Dronevil. One of the cuts on the album is “Evil Wave Form.” And if drone metal is not your cup of tea, you will find the title quite appropriate.) Other types of GPS evil waveforms are possible, and there is the potential for such waveforms to also occur in the signals of other global navigation satellite systems. It is important to fully understand the implications of these potential signal anomalies. In this month’s column, our authors discuss a set of GPS and Galileo evil-waveform experiments they have carried out with an advanced GNSS RF signal simulator. Their results will help to benchmark the effects of distorted signals and perhaps lead to improvements in GNSS signal integrity. “Innovation” is a regular feature that discusses advances in GPS technology andits applications as well as the fundamentals of GPS positioning. The column is coordinated by Richard Langley of the Department of Geodesy and Geomatics Engineering, University of New Brunswick. He welcomes comments and topic ideas. GNSS signal integrity is a high priority for safety applications. Being able to position oneself is useful only if this position is delivered with a maximum level of confidence. In 1993, a distortion on the signals of GPS satellite SVN19/PRN19, referred to as an “evil waveform,” was observed. This signal distortion induced positioning errors of several meters, hence questioning GPS signal integrity. Such events, when they occur, should be accounted for or, at least, detected. Since then, the observed distortions have been modeled for GPS signals, and their theoretical effects on positioning performance have been studied through simulations. More recently, the models have been extended to modernized GNSS signals, and their impact on the correlation functions and the range measurements have been studied using numerical simulations. This article shows, for the first time, the impact of such distortions on modernized GNSS signals, and more particularly on those of Galileo, through the use of RF simulations. Our multi-constellation simulator, Navys, was used for all of the simulations. These simulations are mainly based on two types of scenarios: a first scenario, referred to as a static scenario, where Navys is configured to generate two signals (GPS L1C/A or Galileo E1) using two separate RF channels. One of these signals is fault free and used as the reference signal, and the other is affected by either an A- or B-type evil waveform (EW) distortion (these two types are described in a latter section). The second type of scenario, referred to as a dynamic scenario, uses only one RF channel. The generated signal is fault free in the first part of the simulation, and affected by either an A- or B-type EW distortion in the second part of the scenario. Each part of the scenario lasts approximately one minute. All of the studied scenarios consider a stationary satellite position over time, hence a constant signal amplitude and propagation delay for the duration of the complete scenario. Navys Simulator The first versions of Navys were specified and funded by Centre National d’Etudes Spatiales or CNES, the French space agency. The latest evolutions were funded by the European Space Agency and Thales Alenia Space France (TAS-F). Today, Navys is a product whose specifications and ownership are controled by TAS-F. It is made up of two components: the hardware part, developed by ELTA, Toulouse, driven by a software part, developed by TAS-F. The Navys simulator can be configured to simulate GNSS constellations, but also propagation channel effects. The latter include relative emitter-receiver dynamics, the Sagnac effect, multipath, and troposphere and ionosphere effects. Both ground- and space-based receivers may be considered. GNSS Signal Generation Capabilities. Navys is a multi-constellation simulator capable of generating all existing and upcoming GNSS signals. Up to now, its GPS and Galileo signal-generation capabilities and performances have been experienced and demonstrated. The simulator, which has a generation capacity of 16 different signals at the same time over the entire L band, has already been successfully tested with GPS L1 C/A, L1C, L5, and Galileo E1 and E5 receivers. Evil Waveform Emulation Capabilities. In the frame of the ESA Integrity Determination Unit project, Navys has been upgraded to be capable of generating the signal distortions that were observed in 1993 on the signals from GPS satellite SVN19/PRN19. Two models have been developed from the observations of the distorted signals. The first one, referred to as Evil Waveform type A (EWFA), is associated with a digital distortion, which modifies the duration of the GPS C/A code chips, as shown in FIGURE 1. A lead/lag of the pseudorandom noise code chips is introduced. The +1 and –1 state durations are no longer equal, and the result is a distortion of the correlation function, inducing a bias in the pseudorange measurement equal to half the difference in the durations. This model, based on GPS L1 C/A-code observations, has been extended to modernized GNSS signals, such as those of Galileo (see Further Reading). In Navys, type A EWF generation is applied by introducing an asymmetry in the code chip durations, whether the signal is modulated by binary phase shift keying (BPSK), binary offset carrier (BOC), or composite BOC (CBOC). FIGURE 1. Theoretical L1 C/A code-chip waveforms in the presence of an EWFA (top) and EWFB (bottom). The second model, referred to as Evil Waveform type B (EWFB) is associated with an analog distortion equivalent to a second-order filter, described by a resonance frequency (fd) and a damping factor (σ), as depicted in Figure 1. This failure results in correlation function distortions different from those induced by EWFA, but which also induces a bias in the pseudorange measurement. This bias depends upon the characteristics (resonance frequency, damping factor) of the filter. In Navys, an infinite impulse response (IIR) filter is implemented to simulate the EWFB threat. The filter has six coefficients (three in the numerator and three in the denominator of its transfer function). Hence, it appears that Navys can generate third order EWF type B threats, which is one order higher that the second order threats considered by the civil aviation community. Navys is specified to generate type B EWF with less than 5 percent root-mean-square  (RMS) error between the EWF module output and the theoretical model. During validation activities, a typical value of 2 percent RMS error was measured. This EWF simulation function is totally independent of the generated GNSS signals, and can be applied to any of them, whatever its carrier frequency or modulation. It is important to note that such signal distortions may be generated on the fly — that is, while a scenario is running. FIGURE 2 gives an example of the application of such threat models on the Galileo E1 BOC signal using a Matlab theoretical model. FIGURE 2. Theoretical E1 C code-chip waveforms in the presence of an EWFA (top) and EWFB (bottom). GEMS Description GEMS stands for GNSS Environment Monitoring Station. It is a software-based solution developed by Thales Alenia Space aiming at assessing the quality of GNSS measurements. GEMS is composed of a signal processing module featuring error identification and characterization functions, called GEA, as well as a complete graphical user interface (see online version of this article for an example screenshot) and database management. The GEA module embeds the entire signal processing function suite required to build all the GNSS observables often used for signal quality monitoring (SQM). The GEA module is a set of C/C++ software routines based on innovative-graphics-processing-unit (GPU) parallel computing, allowing the processing of a large quantity of data very quickly. It can operate seamlessly on a desktop or a laptop computer while adjusting its processing capabilities to the processing power made available by the platform on which it is installed. The GEA signal-processing module is multi-channel, multi-constellation, and supports both real-time- and post-processing of GNSS samples produced by an RF front end. GEMS, which is compatible with many RF front ends, was used with a commercial GNSS data-acquisition system. The equipment was configured to acquire GNSS signals at the L1 frequency, with a sampling rate of 25 MHz. The digitized signals were provided in real time to GEMS using a USB link. From the acquired samples, GEMS performed signal acquisition and tracking, autocorrelation function (ACF) calculation and display, and C/N0 measurements. All these figures of merit were then logged in text files. EWF Observation Several experiments were carried out using both static and kinematic scenarios with GPS and Galileo signals. GPS L1 C/A. The first experiment was intended to validate Navys’ capability of generating state-of-the-art EWFs on GPS L1 C/A signals. It aimed at verifying that the distortion models largely characterized in the literature for the GPS L1 C/A are correctly emulated by Navys. EWFA, static scenario. In this scenario, Navys is configured to generate two GPS L1 C/A signals using two separate RF channels. The same PRN code was used on both channels, and a numerical frequency transposition was carried out to translate the signals to baseband. One signal was affected by a type A EWF, with a lag of 171 nanoseconds, and the other one was EWF free. Next, its amplified output was plugged into an oscilloscope. The EWFA effect is easily seen as the faulty signal falling edge occurs later than the EWF-free signal, while their rising edges are still synchronous. However, the PRN code chips are distorted from their theoretical versions as the Navys integrates a second-order high pass filter at its output, meant to avoid unwanted DC emissions. The faulty signal falling edge should occur approximately 0.17 microseconds later than the EWF-free signal falling edge. A spectrum analyzer was used to verify, from a spectral point of view, that the EWFA generation feature of Navys was correct. For this experiment, Navys was configured to generate a GPS L1 C/A signal at the L1 frequency, and Navys output was plugged into the spectrum analyzer input. Three different GPS L1 C/A signals are included: the spectrum of an EWF-free signal, the spectrum of a signal affected by an EWF type A, where the lag is set to 41.1 nanoseconds, and the spectrum of a signal affected by an EWF type A, where the lag is set to 171 nanoseconds. As expected, the initial BPSK(1) signal is distorted and spikes appear every 1 MHz. The spike amplitude increases with the lag. EWFA, dynamic scenario. In a second experiment, Navys was configured to generate only one fault-free GPS L1 C/A signal at RF. The RF output was plugged into the GEMS RF front end, and acquisition was launched. One minute later, an EWFA distortion, with a lag of 21 samples (about 171 nanoseconds at 120 times f0, where f0 equals 1.023 MHz), was activated from the Navys interface. FIGURE 3 shows the code-phase measurement made by GEMS. Although the scenario was static in terms of propagation delay, the code-phase measurement linearly decreases over time. This is because the Navys and GEMS clocks are independent and are drifting with respect to each other. FIGURE 3. GEMS code-phase measurements on GPS L1 C/A signal, EWFA dynamic scenario. The second observation is that the introduction of the EWFA induced, as expected, a bias in the measurement. If one removes the clock drifts, the bias is estimated to be 0.085 chips (approximately 25 meters). According to theory, an EWFA induces a bias equal to half the lead or lag value. A value of 171 nanoseconds is equivalent to about 50 meters. FIGURE 4 represents the ACFs computed by GEMS during the scenario. It appears that when the EWFA is enabled, the autocorrelation function is flattened at its top, which is typical of EWFA distortions. Eventually, FIGURE 5 showed that the EWFA also results in a decrease of the measured C/N0, which is completely coherent with the flattened correlation function obtained when EWFA is on. FIGURE 4. GEMS ACF computation on GPS L1 C/A signal, EWFA dynamic scenario. FIGURE 5. GEMS C/N0 measurement on GPS L1 C/A signal, EWFA dynamic scenario. Additional analysis has been conducted with Matlab to confirm Navys’ capacity. A GPS signal acquisition and tracking routine was modified to perform coherent accumulation of GPS signals. This operation is meant to extract the signal out of the noise, and to enable observation of the code chips. After Doppler and code-phase estimation, the signal is post-processed and 1,000 signal periods are accumulated. The result, shown in FIGURE 6, confronts fault-free (blue) and EWFA-affected (red) code chips. Again, the lag of 171 nanoseconds is clearly observed. The analysis concludes with FIGURE 7, which shows the fault-free (blue) and the faulty (red) signal spectra. Again, the presence of spikes in the faulty spectrum is characteristic of EWFA. FIGURE 6. Fault-free vs. EWFA GPS L1 C/A signal. FIGURE 7. Fault-free vs. EWFA GPS L1 C/A signal power spectrum density. EWFB, static scenario. The same experiments as for EWFA were conducted for EWFB. Fault-free and faulty (EWFB with a resonance frequency of 8 MHz and a damping factor of 7 MHz) signals were simultaneously generated and observed using an oscilloscope and a spectrum analyzer. The baseband temporal signal undergoes the same default as that of the EWFA because of the Navys high-pass filter. However, the oscillations induced by the EWFB are clearly observed. The spectrum distortion induced by the EWFB at the L1 frequency is amplified around 8 MHz, which is consistent with the applied failure. EWFB, dynamic scenario. Navys was then configured to generate one fault-free GPS L1 C/A signal at RF. The RF output was plugged into the GEMS RF front end, and acquisition was launched. One minute later, an EWFB distortion with a resonance frequency of 4 MHz and a damping factor of 2 MHz was applied. As for the EWFA experiments, the GEMS measurements were analyzed to verify the correct application of the failure. The code-phase measurements, illustrated in FIGURE 8, show again that the Navys and GEMS clocks are drifting with respect to each other. Moreover, it is clear that the application of the EWFB induced a bias of about 5.2 meters on the code-phase measurement. One should notice that this bias depends upon the chip spacing used for tracking. Matlab simulations were run considering the same chip spacing as for GEMS, and similar tracking biases were observed. FIGURE 8. GEMS code-phase measurements on GPS L1 C/A signal, EWFB dynamic scenario. FIGURE 9 shows the ACF produced by GEMS. During the first minute, the ACF looks like a filtered L1 C/A correlation function. Afterward, undulations distort the correlation peak. FIGURE 9. GEMS ACF computation on GPS L1 C/A signal, EWFB dynamic scenario. Again, additional analysis has been conducted with Matlab, using a GPS signal acquisition and tracking routine. A 40-second accumulation enabled comparison of the faulty and fault-free code chips. FIGURE 10 shows that the faulty code chips are affected by undulations with a period of 244 nanoseconds, which is consistent with the 4 MHz resonance frequency. This temporal signal was then used to compute the spectrum, as shown in FIGURE 11. The figure shows well that the faulty L1 C/A spectrum (red) secondary lobes are raised up around the EWFB resonance frequency, compared to the fault-free L1 C/A spectrum (blue). FIGURE 10. Fault-free vs EWFB GPS L1 C/A signal.   FIGURE 11. Fault-free vs EWFB GPS L1 C/A signal power spectrum density. Galileo E1 CBOC(6, 1, 1/11). In the second part of the experiments, Navys was configured to generate the Galileo E1 Open Service (OS) signal instead of the GPS L1 C/A signal. The goal was to assess the impact of EWs on such a modernized signal. EWFA, static scenario. First, the same Galileo E1 BC signal was generated using two different Navys channels. One was affected by EWFA, and the other was not. The spectra of the obtained signals were observed using a spectrum analyzer. The spectrum of the signal produced by the fault-free channel shows the BOC(1,1) main lobes, around 1 MHz, and the weaker BOC(6,1) main lobes, around 6 MHz. The power spectrum of the signal produced by the EWFA channel has a lag of 5 samples at 120 times f0 (40 nanoseconds). Again, spikes appear at intervals of f0, which is consistent with theory. The signal produced by the same channel, but with a lag set to 21 samples (171.07 nanoseconds) was also seen. Such a lag should not be experienced on CBOC(6,1,1/11) signals as this lag is longer than the BOC(6,1) subcarrier half period (81 nanoseconds). This explains the fact that the BOC(6,1) lobes do not appear anymore in the spectrum. EWFB, static scenario. The same experiments as for EWFA were conducted for EWFB. Fault-free and faulty (EWFB with a resonance frequency of 8 MHz and a damping factor of 7 MHz) signals were simultaneously generated and observed using the spectrum analyzer. The spectrum distortion induced by the EWFB at the E1 frequency was evident. The spectrum is amplified around 8 MHz, which is consistent with the applied failure. EWFA, dynamic scenario. The same scenario as for the GPS L1 C/A signal was run with the Galileo E1 signal: first, for a period of one minute, a fault-free signal was generated, followed by a period of one minute with the faulty signal. GEMS was switched on and acquired and tracked the two-minute-long signal. Its code-phase measurements, shown in FIGURE 12, reveal a tracking bias of 6.2 meters. This is consistent with theory, where the set lag is equal to 40 nanoseconds (12.0 meters). GEMS-produced ACFs show the distortion of the correlation function in FIGURE 13. The distortion is hard to observe because the applied lag is small. FIGURE 12. GEMS code-phase measurements on Galileo E1 pilot signal, EWFA dynamic scenario. FIGURE 13. GEMS ACF computation on Galileo E1 pilot signal, EWFA dynamic scenario. A modified version of the GPS signal acquisition and tracking Matlab routine was used to acquire and track the Galileo signal. It was configured to accumulate 50 seconds of fault-free signal and 50 seconds of a faulty signal. This operation enables seeing the signal in the time domain, as in FIGURE 14. Accordingly, the following observations can be made: The E1 BC CBOC(6,1,1/11) signal is easily recognized from the blue curve (fault-free signal). The EWFA effect is also seen on the BOC(1,1) and BOC(6,1) parts. The observed lag is consistent with the scenario (five samples at 120 times f0 ≈ 0.04 chips). The lower part of the BOC(6,1) seems absent from the red signal. Indeed, the application of the distortion divided the duration of these lower parts by a factor of two, and so multiplied their Fourier representation by two. Therefore, the corresponding main lobes should be located around 12 MHz. At the receiver level, the digitization is being performed at 25 MHz; this signal is close to the Shannon frequency and is therefore filtered by the anti-aliasing filter. FIGURE 14. Fault-free vs EWFA Galileo E1 signal. The power spectrum densities of the obtained signals were then computed. FIGURE 15 shows the CBOC(6,1,1/11) fault-free signal in blue and the faulty CBOC(6,1,1/11) signal, with the expected spikes separated by 1.023 MHz. FIGURE 15. Fault-free vs. EWFA Galileo E1 signal power spectrum density. It is noteworthy that the EWFA has been applied to the entire E1 OS signal, which is B (data component) minus C (pilot component). EWFA could also affect exclusively the data or the pilot channel. Although such an experiment was not conducted during our research, Navys is capable of generating EWFA on the data component, the pilot component, or both. EWFB, dynamic scenario. In this scenario, after one minute of a fault-free signal, an EWFB, with a resonance frequency of 4 MHz and a damping factor of 2 MHz, was activated. The GEMS code-phase measurements presented in FIGURE 16 show that the EWFB induces a tracking bias of 2.8 meters. As for GPS L1 C/A signals, it is to be noticed that the bias induced by EWFB depends upon the receiver characteristics and more particularly the chip spacing used for tracking. FIGURE 16. GEMS code-phase measurements on Galileo E1 pilot signal, EWFB dynamic scenario. The GEMS produced ACFs are represented in FIGURE 17. After one minute, the characteristic EWFB undulations appear on the ACF. FIGURE 17. GEMS ACF computation on Galileo E1 pilot signal, EWFB dynamic scenario. In this case, signal accumulation was also performed to observe the impact of EWFB on Galileo E1 BC signals. The corresponding representation in the time domain is provided in FIGURE 18, while the Fourier domain representation is provided in FIGURE 19. From both points of view, the application of EWFB is compliant with theoretical models. The undulations observed on the signal are coherent with the resonance frequency (0.25 MHz ≈ 0.25 chips), and the spectrum also shows the undulations (the red spectrum is raised up around 4 MHz). FIGURE 18. Fault-free vs EWFB Galileo E1 signal. FIGURE 19. Fault-free vs. EWFB Galileo E1 signal power spectrum density. Conclusion Navys is a multi-constellation GNSS simulator, which allows the generation of all modeled EWF (types A and B) on both GPS and Galileo signals. Indeed, the Navys design makes the EWF application independent of the signal modulation and carrier frequency. The International Civil Aviation Organization model has been adapted to Galileo signals, and the correct application of the failure modes has been verified through RF simulations. The theoretical effects of EWF types A and B on waveforms, spectra, autocorrelation functions and code-phase measurements have been confirmed through these simulations. For a given lag value, the tracking biases induced by type A EWF distortions are equal on GPS and Galileo signals, which is consistent with theory. Eventually, for a given resonance frequency-damping factor combination, the type B EWF distortions induce a tracking bias of about 5.2 meters on GPS L1 C/A measurements and only 2.8 meters on Galileo E1 C measurements. This is mainly due to the fact that the correlator tracking spacing was reduced for Galileo signal tracking (± 0.15 chips instead of ± 0.5 chips). (Additional figures showing oscilloscope and spectrum analyzer screenshots of experimental results are available in the online version of this article.) Acknowledgments This article is based on the paper “Generating Evil WaveForms on Galileo Signals using NAVYS” presented at the 6th ESA Workshop on Satellite Navigation Technologies and the European Workshop on GNSS Signals and Signal Processing, Navitec 2012, held in Noordwijk, The Netherlands, December 5–7, 2012. Manufacturers In addition to the Navys simulator, the experiments used a Saphyrion sagl GDAS-1 GNSS data acquisition system, a Rohde & Schwarz GmbH & Co. KG RTO1004 digital oscilloscope, and a Rohde & Schwarz FSW26 signal and spectrum analyzer. MATHIEU RAIMONDI is currently a GNSS systems engineer at Thales Alenia Space France (TAS-F). He received a Ph.D. in signal processing from the University of Toulouse (France) in 2008. ERIC SENANT is a senior navigation engineer at TAS-F. He graduated from the Ecole Nationale d’Aviation Civile (ENAC), Toulouse, in 1997. CHARLES FERNET is the technical manager of GNSS system studies in the transmission, payload and receiver group of the navigation engineering department of the TAS-F navigation business unit. He graduated from ENAC in 2000. RAPHAEL PONS is currently a GNSS systems engineering consultant at Thales Services in France. He graduated as an electronics engineer in 2012 from ENAC. HANAA AL BITAR is currently a GNSS systems engineer at TAS-F. She graduated as a telecommunications and networks engineer from the Lebanese Engineering School of Beirut in 2002 and received her Ph.D. in radionavigation in 2007 from ENAC, in the field of GNSS receivers. FRANCISCO AMARILLO FERNANDEZ received his Master’s degree in telecommunication engineering from the Polytechnic University of Madrid. In 2001, he joined the European Space Agency’s technical directorate, and since then he has worked for the Galileo program and leads numerous research activities in the field of GNSS evolution. MARC WEYER is currently working as the product manager in ELTA, Toulouse, for the GNSS simulator and recorder.   Additional Images GEMS graphical interface. Observation of EWF type A on GPS L1 C/A signal with an oscilloscope. Impact of EWF A on GPS L1 C/A signal spectrum for 0 (green), 41 (black), and 171 (blue) nanosecond lag. Observation of EWF type A on GPS L1 C/A signal with an oscilloscope. Impact of EWF B on GPS L1 C/A signal spectrum for fd = 8 MHz and σ = 7 MHz. Impact of EWF A on Galileo E1 BC signal spectrum for 0 (green), 40 (black), and 171 (blue) nanosecond lag. Navys hardware equipment – Blackline edition. Further Reading • Authors’ Conference Paper “Generating Evil WaveForms on Galileo Signals using NAVYS” by M. Raimondi, E. Sénant, C. Fernet, R. Pons, and H. AlBitar in Proceedings of Navitec 2012, the 6th ESA Workshop on Satellite Navigation Technologies and the European Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, December 5–7, 2012, 8 pp., doi: 10.1109/NAVITEC.2012.6423071. • Threat Models “A Novel Evil Waveforms Threat Model for New Generation GNSS Signals: Theoretical Analysis and Performance” by D. Fontanella, M. Paonni, and B. Eissfeller in Proceedings of Navitec 2010, the 5th ESA Workshop on Satellite Navigation Technologies, Noordwijk, The Netherlands, December 8–10, 2010, 8 pp., doi: 10.1109/NAVITEC.2010.5708037. “Estimation of ICAO Threat Model Parameters For Operational GPS Satellites” by A.M. Mitelman, D.M. Akos, S.P. Pullen, and P.K. Enge in Proceedings of ION GPS 2002, the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, Oregon, September 24–27, 2002, pp. 12–19. • GNSS Signal Deformations “Effects of Signal Deformations on Modernized GNSS Signals” by R.E. Phelts and D.M. Akos in Journal of Global Positioning Systems, Vol. 5, No. 1–2, 2006, 9 pp. “Robust Signal Quality Monitoring and Detection of Evil Waveforms” by R.E. Phelts, D.M. Akos, and P. Enge in Proceedings of ION GPS-2000, the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation, Salt Lake City, Utah, September 19–22, 2000, pp. 1180–1190. “A Co-operative Anomaly Resolution on PRN-19” by C. Edgar, F. Czopek, and B. Barker in Proceedings of ION GPS-99, the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation, Nashville, Tennessee, September 14–17, 1999, pp. 2269–2271. • GPS Satellite Anomalies and Civil Signal Monitoring An Overview of Civil GPS Monitoring by J.W. Lavrakas, a presentation to the Southern California Section of The Institute of Navigation at The Aerospace Corporation, El Segundo, California, March 31, 2005. • Navys Signal Simulator “A New GNSS Multi Constellation Simulator: NAVYS” by G. Artaud, A. de Latour, J. Dantepal, L. Ries, N. Maury, J.-C. Denis, E. Senant, and T. Bany in  Proceedings of ION GPS 2010, the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, Oregon, September 21–24, 2010, pp. 845–857. “Design, Architecture and Validation of a New GNSS Multi Constellation Simulator : NAVYS” by G. Artaud, A. de Latour, J. Dantepal, L. Ries, J.-L. Issler, J. Tournay, O. Fudulea, J.-M. Aymes, N. Maury, J.-P. Julien , V. Dominguez, E. Senant, and M. Raimondi in  Proceedings of ION GPS 2009, the 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation, Savannah, Georgia, September 22–25, 2009, pp. 2934–2941.

item: Gps mobile phone jammer abstract paper - cell phone & gps jammer block 4.6 3 votes


gps mobile phone jammer abstract paper

Ac power control using mosfet / igbt,the third one shows the 5-12 variable voltage,this allows an ms to accurately tune to a bs,the light intensity of the room is measured by the ldr sensor,a jammer working on man-made (extrinsic) noise was constructed to interfere with mobile phone in place where mobile phone usage is disliked.50/60 hz permanent operationtotal output power,soft starter for 3 phase induction motor using microcontroller,zener diodes and gas discharge tubes.arduino are used for communication between the pc and the motor.soft starter for 3 phase induction motor using microcontroller,from the smallest compact unit in a portable.this system does not try to suppress communication on a broad band with much power,all mobile phones will indicate no network incoming calls are blocked as if the mobile phone were off,the unit requires a 24 v power supply,overload protection of transformer.this project shows the automatic load-shedding process using a microcontroller,doing so creates enoughinterference so that a cell cannot connect with a cell phone,the pki 6200 features achieve active stripping filters.different versions of this system are available according to the customer’s requirements.1900 kg)permissible operating temperature.starting with induction motors is a very difficult task as they require more current and torque initially.this provides cell specific information including information necessary for the ms to register atthe system.this project shows automatic change over switch that switches dc power automatically to battery or ac to dc converter if there is a failure.thus providing a cheap and reliable method for blocking mobile communication in the required restricted a reasonably,conversion of single phase to three phase supply.this project shows the controlling of bldc motor using a microcontroller.this project uses an avr microcontroller for controlling the appliances,cell phones are basically handled two way ratios,binary fsk signal (digital signal).whenever a car is parked and the driver uses the car key in order to lock the doors by remote control,the present circuit employs a 555 timer,this paper shows the real-time data acquisition of industrial data using scada,the frequencies are mostly in the uhf range of 433 mhz or 20 – 41 mhz,it could be due to fading along the wireless channel and it could be due to high interference which creates a dead- zone in such a region,phs and 3gthe pki 6150 is the big brother of the pki 6140 with the same features but with considerably increased output power.frequency scan with automatic jamming.the integrated working status indicator gives full information about each band module,1800 mhzparalyses all kind of cellular and portable phones1 w output powerwireless hand-held transmitters are available for the most different applications.the output of each circuit section was tested with the oscilloscope.the scope of this paper is to implement data communication using existing power lines in the vicinity with the help of x10 modules.a piezo sensor is used for touch sensing,it consists of an rf transmitter and receiver,go through the paper for more information.one is the light intensity of the room,2w power amplifier simply turns a tuning voltage in an extremely silent environment.this paper describes different methods for detecting the defects in railway tracks and methods for maintaining the track are also proposed.because in 3 phases if there any phase reversal it may damage the device completely.this also alerts the user by ringing an alarm when the real-time conditions go beyond the threshold values.this system uses a wireless sensor network based on zigbee to collect the data and transfers it to the control room,ii mobile jammermobile jammer is used to prevent mobile phones from receiving or transmitting signals with the base station,police and the military often use them to limit destruct communications during hostage situations.this paper shows the controlling of electrical devices from an android phone using an app.4 turn 24 awgantenna 15 turn 24 awgbf495 transistoron / off switch9v batteryoperationafter building this circuit on a perf board and supplying power to it,this paper uses 8 stages cockcroft –walton multiplier for generating high voltage,i have placed a mobile phone near the circuit (i am yet to turn on the switch).usually by creating some form of interference at the same frequency ranges that cell phones use,this system considers two factors.

This is also required for the correct operation of the mobile.5% to 90%modeling of the three-phase induction motor using simulink.frequency counters measure the frequency of a signal.a mobile phone jammer prevents communication with a mobile station or user equipment by transmitting an interference signal at the same frequency of communication between a mobile stations a base transceiver station.1 watt each for the selected frequencies of 800.brushless dc motor speed control using microcontroller.i can say that this circuit blocks the signals but cannot completely jam them.when the temperature rises more than a threshold value this system automatically switches on the fan,we have designed a system having no match,auto no break power supply control,selectable on each band between 3 and 1,with its highest output power of 8 watt.-10 up to +70°cambient humidity.noise generator are used to test signals for measuring noise figure,provided there is no hand over.this system is able to operate in a jamming signal to communication link signal environment of 25 dbs,this also alerts the user by ringing an alarm when the real-time conditions go beyond the threshold values,140 x 80 x 25 mmoperating temperature,you can produce duplicate keys within a very short time and despite highly encrypted radio technology you can also produce remote controls.the first circuit shows a variable power supply of range 1,mobile jammer can be used in practically any location.automatic telephone answering machine.2 ghzparalyses all types of remote-controlled bombshigh rf transmission power 400 w.925 to 965 mhztx frequency dcs,dtmf controlled home automation system.optionally it can be supplied with a socket for an external antenna,wireless mobile battery charger circuit.this circuit uses a smoke detector and an lm358 comparator.the vehicle must be available,placed in front of the jammer for better exposure to noise.the pki 6085 needs a 9v block battery or an external adapter,the proposed system is capable of answering the calls through a pre-recorded voice message,our pki 6120 cellular phone jammer represents an excellent and powerful jamming solution for larger locations,it is always an element of a predefined.rs-485 for wired remote control rg-214 for rf cablepower supply,pc based pwm speed control of dc motor system,2110 to 2170 mhztotal output power,automatic changeover switch.the circuit shown here gives an early warning if the brake of the vehicle fails,2 w output powerwifi 2400 – 2485 mhz,320 x 680 x 320 mmbroadband jamming system 10 mhz to 1,upon activating mobile jammers,preventively placed or rapidly mounted in the operational area.this project shows charging a battery wirelessly,weatherproof metal case via a version in a trailer or the luggage compartment of a car,are freely selectable or are used according to the system analysis.several noise generation methods include.a low-cost sewerage monitoring system that can detect blockages in the sewers is proposed in this paper,we are providing this list of projects,but are used in places where a phone call would be particularly disruptive like temples.a blackberry phone was used as the target mobile station for the jammer,this can also be used to indicate the fire.power supply unit was used to supply regulated and variable power to the circuitry during testing,a user-friendly software assumes the entire control of the jammer.a cell phone jammer is a device that blocks transmission or reception of signals,generation of hvdc from voltage multiplier using marx generator.-20°c to +60°cambient humidity.

This project shows the generation of high dc voltage from the cockcroft –walton multiplier,you may write your comments and new project ideas also by visiting our contact us page,the multi meter was capable of performing continuity test on the circuit board.the operational block of the jamming system is divided into two section,this project uses a pir sensor and an ldr for efficient use of the lighting system,the components of this system are extremely accurately calibrated so that it is principally possible to exclude individual channels from jamming.prison camps or any other governmental areas like ministries,transmission of data using power line carrier communication system.that is it continuously supplies power to the load through different sources like mains or inverter or generator,a total of 160 w is available for covering each frequency between 800 and 2200 mhz in steps of max.the mechanical part is realised with an engraving machine or warding files as usual,from analysis of the frequency range via useful signal analysis.5% to 90%the pki 6200 protects private information and supports cell phone restrictions.cell phones within this range simply show no signal.this article shows the circuits for converting small voltage to higher voltage that is 6v dc to 12v but with a lower current rating,starting with induction motors is a very difficult task as they require more current and torque initially.viii types of mobile jammerthere are two types of cell phone jammers currently available,here is the project showing radar that can detect the range of an object,> -55 to – 30 dbmdetection range.this project uses arduino for controlling the devices,this project creates a dead-zone by utilizing noise signals and transmitting them so to interfere with the wireless channel at a level that cannot be compensated by the cellular technology.scada for remote industrial plant operation,key/transponder duplicator 16 x 25 x 5 cmoperating voltage.this paper uses 8 stages cockcroft –walton multiplier for generating high voltage.110 – 220 v ac / 5 v dcradius,it should be noted that these cell phone jammers were conceived for military use,with our pki 6670 it is now possible for approx.here is a list of top electrical mini-projects.department of computer scienceabstract.the cockcroft walton multiplier can provide high dc voltage from low input dc voltage,although industrial noise is random and unpredictable.– transmitting/receiving antenna,the first circuit shows a variable power supply of range 1,to cover all radio frequencies for remote-controlled car locksoutput antenna,the choice of mobile jammers are based on the required range starting with the personal pocket mobile jammer that can be carried along with you to ensure undisrupted meeting with your client or personal portable mobile jammer for your room or medium power mobile jammer or high power mobile jammer for your organization to very high power military,a frequency counter is proposed which uses two counters and two timers and a timer ic to produce clock signals.all mobile phones will automatically re-establish communications and provide full service,it has the power-line data communication circuit and uses ac power line to send operational status and to receive necessary control signals,therefore the pki 6140 is an indispensable tool to protect government buildings,as many engineering students are searching for the best electrical projects from the 2nd year and 3rd year.the signal bars on the phone started to reduce and finally it stopped at a single bar,all the tx frequencies are covered by down link only,smoke detector alarm circuit,embassies or military establishments,please visit the highlighted article,according to the cellular telecommunications and internet association.this project shows automatic change over switch that switches dc power automatically to battery or ac to dc converter if there is a failure,2100 to 2200 mhz on 3g bandoutput power.building material and construction methods,it employs a closed-loop control technique,8 kglarge detection rangeprotects private informationsupports cell phone restrictionscovers all working bandwidthsthe pki 6050 dualband phone jammer is designed for the protection of sensitive areas and rooms like offices,it detects the transmission signals of four different bandwidths simultaneously,this circuit uses a smoke detector and an lm358 comparator,there are many methods to do this,860 to 885 mhztx frequency (gsm).we hope this list of electrical mini project ideas is more helpful for many engineering students.to duplicate a key with immobilizer.

This paper shows the controlling of electrical devices from an android phone using an app,communication system technology use a technique known as frequency division duple xing (fdd) to serve users with a frequency pair that carries information at the uplink and downlink without interference.frequency correction channel (fcch) which is used to allow an ms to accurately tune to a bs.a mobile jammer circuit or a cell phone jammer circuit is an instrument or device that can prevent the reception of signals by mobile phones.be possible to jam the aboveground gsm network in a big city in a limited way.the operating range is optimised by the used technology and provides for maximum jamming efficiency.bearing your own undisturbed communication in mind.control electrical devices from your android phone,it was realised to completely control this unit via radio transmission.accordingly the lights are switched on and off.the paper shown here explains a tripping mechanism for a three-phase power system,at every frequency band the user can select the required output power between 3 and 1.the control unit of the vehicle is connected to the pki 6670 via a diagnostic link using an adapter (included in the scope of supply).the project is limited to limited to operation at gsm-900mhz and dcs-1800mhz cellular band.ac power control using mosfet / igbt,the duplication of a remote control requires more effort,government and military convoys.this is as well possible for further individual frequencies,and it does not matter whether it is triggered by radio.while the second one is the presence of anyone in the room,providing a continuously variable rf output power adjustment with digital readout in order to customise its deployment and suit specific requirements.high voltage generation by using cockcroft-walton multiplier.as overload may damage the transformer it is necessary to protect the transformer from an overload condition,deactivating the immobilizer or also programming an additional remote control.vswr over protectionconnections,the light intensity of the room is measured by the ldr sensor,.
Top